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EFFECT OF A CAMOUFLET EXPLOSION ON FILTRATION CHARACTERISTICS OF 

A BRITTLE MEDIUM 

V. V. Kadet, E. E. Lovatskii, 
V. I. Selyakov, and V. K. Sirotkin 

UDC 534.222 

At the present time, explosions are finding increasing use in the national economy. In 
particular, they are widely used for increasing the production of oil and gas wells. Here, 
there is great interest in the filtration properties of the medium surrounding the explosion. 
It should be noted that the theoretical study of filtration properties of media is especially 
important, since their experimental study is very difficult. 

However, at the present time, there are practically no works in which the filtration 
characteristics of media after an explosion are computed on the basis of the physical picture 
of the action of a camouflet explosion on the surrounding rock. Thus, e.g., in [I] an at- 
tempt is made to describe phenomenologically using a single function, the coefficient of per- 
meability of the medium after a camouflet explosion both in the pulverization zone and 
in the zone of radial fracturing. But the results of this work do not agree satisfactorily 
with the experiments [2], since in the investigation concrete mechanisms for dynamic action 
of the explosion on the medium were not taken into account. 
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In the present work, we determine the filtration properties of a medium after a camou- 
flat explosion in a brittle weakly porous rock with a low starting coefficient of permeabil- 
ity. In examining this problem, it is necessary to take into account the fact that with a 
camouflet explosion three zones that differ considerably as to their structure are formed: a 
pulverization zone, a radial fracture zone, and an elastic deformatlon zone [3]. In the 
pulverization zone, due to large stresses on the shock front, there is a fracture of rock. 
Subsequent motion of the pulverized medium loosens it up. This loosening up can be explained 
by the dilatancy effect [4], which is manifested in a change in the density of the medium 
under the action of shear deformations. At small depths, a zone with radial fracture, 
arising due to tensile azimuthal stresses, can border the pulverization zone. In order to 
estimate the porosity in this zone, it is possible to use the model of elastic rods [3]. 
And, finally, it can be assumed that in the elastic deformation zone the changes in the prop- 
erties of the rock are small. 

The coefficient of permeability, computed on the basis of these assumptions as to the 
nature of the action of the camouflet explosion on the surrounding medium, is compared with 
the experimental data from the "Hardhat" explosion [2]. 

Pulverization Zone. Let us examine the filtration properties of a medium in the pul- 
verization zone. There exist in the literature a large number of theoretical and empirical 
expressions for calculating the coefficient of permeability of fractured rock; however, the 
most widely accepted one is the formula of Kozen [i, 5, 6]: 

K = Ch.ms/2L (I) 

where m is porosity; Z, specific surface area of the pieces; S, constant, related to the 
geometry of the sections of the porous channels; T, coefficient of tortuosity. In the case 
when the shape of the pieces is close to cubic, the specific surface area can be related to 
the characteristic size of a piece Z = 6(1 -- m)d. Then, assuming the largest typical values 
for C and T and (C = 0.5, r = 2), from relation (i) we obtain 

K = 0.7 . t0  -~ m ~ d V ( i - - m )  2. (2) 

Thus, in order to determine the filtration properties of a medium in the pulverization zone, 
it is necessary to know its porosity as well as the sizes of the fractured rock pieces. 

In the present work, we examine the filtration properties of a medium after an explosion 
in initially monolithic brittle rock. We assume that such a medium is a weakly porous rock, 
e.g., granite. The porosity in the pulverization zone arises due to fracture and subsequent 
motion of the fractured rock with the explosion. The basic mechanism for loosening up the 
fractured rock is the dilatancy effect, related to the change in the specific volume due to 
shearing deformations [4]. In this case, neglecting the elastic compressibility, the change 
in porosity m can be represented in the form 

dm = (i - -  m)A]d?h 

where h is the coefficient of dilatancy; dy is the change in the shearing stresses. 

The problem of the explosion in a dilating medium was solved in [7] for the case of a 
constant dilatancy coefficient. Using the results of this work, in the case of monolithic 
rock, we obtain the following expression for the porosity: 

+ n = 3/(1 + A), (3)  m ( r ) = t - -  t - -  \ r ]  ] ' 

where ao and a are the starting and final radii of the cavity. We note that at large dis- 
tances from the boundary of the cavity, the porosity changes according to a power law 
re(r) ~ r - n .  

I n  o r d e r  t o  e s t i m a t e  the  a v e r a g e  s i z e  o f  t h e  p i e c e s  o f  p u l v e r i z e d  r o c k ,  l e t  us assume 
t h a t  the  f r a c t u r i n g  o c c u r s  a l o n g  the  f r o n t  o f  t h e  shock  wave as a r e s u l t  o f  t he  deve lopmen t  
o f  m i c r o s c o p i c  c r a c k s  t h a t  a r e  a l r e a d y  p r e s e n t  i n  t he  r o c k .  "Accord ing  t o  t he  c r i t e r i a  of  
G r i f f i t h s  [ 8 ] ,  o n l y  t h o s e  m i c r o s c o p i c  c r a c k s  w i l l  grow when s i z e  exceeds  some l i m i t i n g  l e n g t h  
Z(o ) ,  depend ing  on t h e  a p p l i e d  s t r e s s ,  a c c o r d i n g  t o  t h e  law 

z(~) = klo~. ( 4 )  

Then, the size of a piece of pulverized rock will be determined by the distance between the 
growing mlcrocracks. Introducing the function N(Z), determining the density of microcracks 
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with length exceeding 5, taking into account (4), we obtain an expression for the average 
size of a piece of pulverized rock 

d(o) = NI~ (l(o)) = N~(k/o~), (5) 

where o is the stress at the front of the wave. Thus, knowing the density of microcracks and 
the nature of the change in o with distance, it is possible to determine the distance depen- 
dence of the average size of a piece. 

The following calculations will be carried out assuming that the function N(~) has an 
exponential form. In this case, from the (5), it is possible to obtain the expression 

d (~) = do exp (~_~h (6) 
\ o / '  

where  do i s  t h e  minimum d i s t a n c e  be tween  m i c r o c r a c k s ,  w h i l e  t h e  q u a n t i t y  ~,  i s  d e t e r m i n e d  by 
t h e  a v e r a g e  l e n g t h  o f  a m i c r o c r a c k :  

~ = kld>. 

This quantity is an internal parameter of the medium and does not depend on the intensity of 
the explosion. 

Expression (6) is valid only when the duration of the loading wave significantly exceeds 
the time of growth of cracks. In the opposite case, microcracks do not have time to grow and 
pulverization will no~ occur. For this reason, the maximum size of a piece will be deter- 
mined by the width of the loading wave, which in the presence of the explosion turns out to 
be of the order do. In this manner, for pieces with maximum size d m in the pulverization 
zone the following relation is valid: 

dm = ~a0, (7) 

where the quantity ~ ~ I. 

Using relations r and (7), we obtain an expression that determines the stress in the 
wave on the pulverization zone boundary (r = R~): 

o (R1) = ~,  ]n -1/2 (dm/do) = ~, [ln (=ao/do)] -1/~. (8) 

This quanti~y can be identified with the effective strength of the rock in the presence of 
the explosion. As can be seen, i= depends quite weakly on the intensity of the explosion 
W(o(Rz) in-I/~(W)) and as W increases, it smoothly decreases. 

The quantity d(R,) determines the relation between the size of the pulverization zone 
and the final radius of the cavity [3]: 

/ E ~lln ( E]z/niln(d~/do)]l/~a. (9) 

It is easy to see ~hat ~he ratio R:/a also depends On ~he scale of the explosion. For small 
variations in the intensity of the explosion, this relation can be viewed as constant. At 
the same time, relation (9) shows that it is necessary to =rest the transfer of laboratory 
test results to natural explosions with care. 

In order to determine the dependence of the size of pieces and, therefore, the coefficient 
of permeability on distance, it is necessary to know the nature of damping of the shock wave 
with distance. As the results of numerous calculations show, the shock wave is damped in the 
pulverization zone according ~o a power law o(r) ~ r-8. Then, taking into account the rela- 
tion between the Lagranglan and Euler particle radii [7], from relations (6) and (8)j we 
obtain 

d (r) = do exp ( \~"~ +~o~ In (d~/do) , (10) 

where the following dimensionless distances have been introduced: ~ = r/a, ~o = ao/a << i, 
and ~, = R~/a. In expression (I0), the quantity ~o n can be neglected if we are not interested 
in the region in direct proximity to the surface (r -- a ~ a~on/n ~ 10-as). 

Substituting relations (3) and (10) into (2) and taking into account the fact that m << 
i, we obtain the final expression for the coefficient of permeability in the pulverization 
zone : 
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As can be seen from this relation, the behavior of the permeability coefficient in the pul- 
verlzat$on zone as a function of distance is determined by the competition between two fac- 
tors. On the one hand, decrease in porosity with increasing ~ leads to a decrease in the 
permeability coefficient. The nature of this relation has a universal form and does not 
depend on the scale of the explosion (if the condition ~o n << 1 is satisfied). On the other 
hand, an increase in the size of the pulverized rock pieces leads to an increase in the 
permeability. This dependence is strongly related to the scale of the explosion and is 
determined by the ratio dm/do. 

If the ratio dm/do is close to one, then K:(~) in the pulverlzatlon zone will decrease 
monotonlcally with distance. As this ratio increases, in regions of $ close to ~,, the func- 
tion Kt(~) will flatten out. Finally, when the inequality in (dm/do) > 3n/4B is satisfied, 
the coefficient of permeability becomes a nonmonotonic function of distance: in the pul- 
verization zone a minimum appears in the function Ki(~). The coordinate of this minimum 
assuming that ~ >> 1will be given by the relation 

As can be seen from the expression presented, as t h e  scale of  the explosion increases, the 
coord• of the minimum will shift toward shorter distances. 

Radial Fracture Zone. In many cases with a camouflet explosion, a radial fracture zone 
can arise beyond the polarization zone. Radial cracks appear due to tensile azimuthal 
stresses. A quasistatic estimate [3] gives the following relation between the radius of the 
pulverization zone R: and the radius of the radial fracture zone Ri: 

/ 0 (12) 
R~ = Ri V 2% + 3p o' 

where po is the back pressure; oo is the rupture strength. From this estimate, it is evident 
that the radial fracture zone forms if the inequality ~(Rt) > 2Oo + 390 is satisfied. For fixed 
values of o(Ri) and co, it follows from this inequality that radial cracks can form only at 
dep t h s  

h <  (r --  2~o)/3pg, 

where p is the density of the rock. 

Substituting relatlon (8) into (12) and neglectlng for simpliclty the quantity po, we 
obtain a relation between R~ and Ri in the form 

B+ = R t ln-t/4 (d~/do), 

from which it is evident that the ratio of the radius of the radial fracture zone to the 
radius of the pulverization zone decreases with increasing scale of the explosion. 

Using equallty (9), it is possible to relate the radius of the radlal fracture zone, 
which determines the size of the fracture zone, with the radius of the cavity 

R 2 = ~-~ \ n~]  ] In (13) 

Since A is always less than 0.5, it follows from expression (13) that as the quantity dm/d. 
increases the ratio of the size of the radial fracture zone to the size of the cavity de- 
creases. This is explained by the fact that an increase in the ratio dm/di is equlvalent to 
a decrease in the effective strength of the medium on pulverization. As a result, the volume 
of the pulverization zone, where the greatest dissipation of energy of the explosion occurs, 
increases. For this reason, the fraction of the energy of the explosion entering into the 
formation of the radial cracks decreases, which is what leads to the relatlve decrease in 
the radial fracture zone. 
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In order to calculate the coefficient of permeability in the radial fracture zone, let 
us assume that the cracks form two mutually perpendicular systems of flat cracks with a 
density P and opening b. Then, the coefficient of permeability will be determined by the 
relation [9] 

K = */eb3F. (14) 

The quantity 2bF determines =he porosity of the rock in the radial fracture zone. For this 
reason, the physical meaning of expression (14) is the same as that of expression (I). The 
difference in the coefficients is related to the difference in the geometry of a porpus space 
in the pulverization zone and in the radial fracture zone. 

The porosity in the radial fracture zone can ba calculated using the approximation of 
elastic rods [3]. Then, assuming that the stresses have a static character, we obtain 

where v is Poisson's coefficient. Substituting this expression into relation (14) and taking 
into account (8), we obtain 

(i--~) 3 
~ 

In order to determine the dependence of the permeability coefficient on distance in the 
radial fracture zone, it is necessary to know the law governing the variation of F(r). Near 
the pulverization front, the density of cracks is determined by the minimum distance between 
microcracks do. For the rest of the volume of the radial fracture zone, this quantity can 
be estimated in two ways: I) constancy of F(r) with distance in the fracturing zone, the num- 
ber of radial cracks will in this case by the magnitude of the variable; 2) the number of 
radial cracks does not change with distance, then F(r) will vary according to the law 

We obtain a final expression for Ks(r) corresponding to the first and second cases in 
the form 

K 2 ( r ) = d ~ ( l - - , ) ~ {  o,  ~3 (_~1)6; (15) 
6 ~E In 1/2 (dm/d6)] 

K2 (r) = ~o ----6--- [E In ~/~ (dm/do)] . \ r  / " 

Thus, theoretically, in the radial fracture zone, the coefficient of permeability can decrease 
with distance according to the law i/r 6, as well as according to the law i/r a. 

It is useful to compare expressions (15) and (16) with relation (ll) with r = RI. In 
this case, we obtain the expression 

KI(Rx)IK2(Ra) = 4.2. i 0 - ~ ( l  - -  v) 8. (An) 8. (dm14) ~ ~, O.t5(An)8(dm/~) 2, 

where it was assumed that ~ = i/3. From this relation, it is evident that if 

din~do < 2.5(An) -a/2' (17) 

then the permeability in the pulverization zone will turn out to be less than in the radial 
fracture zone. The critical value of the parameter dm/do equals 25 for A = 0.2 and 75 for 
A = 0.I. Thus, the inequality opposite to inequality (17) can be satisfied only for very 
intense explosions. In this case, the coefficient of permeability is observed to decrease 
at the instant of the transition from the pulverization zone to the radial fracture zone. 
In the remaining cases, with the transition from the pulverization zone to the radial frac- 
ture zone the coefflclent of permeability should be observed to increase. 

Discussion of Results and Comparison with Experimen[. Let us examine the basic con- 
clusions that follow from the relations obtained above. First, it turns out that the radius 
of the pulverization and fracture zones do not satisfy the similarity law R i ~ W z/s, which 
is usually used in analyzing the fracturing action of an explosion. The deviation from this 
law is determined by the value of the quantity dm/do. Figures 1 and 2 show, respectively, 
the ratio of the radii of the pulverization (curve 1 in Fig. i) and the fracturing zones to 
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the size of the cavity as a function of in (~/do). In this case, the following values of 
the parameters were assumed: 

~,/E = 5.10 -8, ~o/~, = 3-10 -~, A = 0.i. 

It is evident that the strongest dependence on the scale of the explosion is observed for low 
values of in (dm/do). In the region of large dm/de, when in (dm/do) ~ 2, the ratios R2/a and 
Ra/a can be assumed to be constant. 

The behavior of the permeability coefficient is more sensitive to changes in the ratio 
dm/do. This is related to the fact that the quantity in (dm/do) enters into the index of 
the exponent in the expression for K=(r). Figure 3 shows the dependence of the dimenslonless 

a 
coefficient of permeability (Ko = 0.7"i0 -a de) on the dimensionless distance ~ = r/a for 
three values of the quantity in (dm/d=): for curve i, in (dm/do) = i; for curve 2, in (dm/ 
do) = 3; for curve 3, in (dm/do) = 5. (In the fracture zone, the curve was constructed ac- 
cording to Eq. (15).) In addition, in calculating the coefficient of permeability, the 
value of B was taken as equal to 2, which approximately corresponds to damping of maximum 
stresses in granite [i0]. 

It is clearly evident from Fig. 3 that the nature of the dependence of the coefficient 
of permeability on distance evolves with the increase in the ratio dm/do. When dm/do is close 
to i, a monotonic decrease is observed in K(r) in the pulverization zone. In addition, due 
to the high effective strength, greater dispersion of the medium occurs in this case in the 
radial fracture zone. This is what leads to the fact that a sharp increase in permeability 
is observed on the zone boundary with a transition into the radial fracture zone. 

As the ratio dm/do increases, the dependence of the permeability coefficient on distance 
in the pulverization zone becomes nonmonotonic. A characteristic minimum is observed in the 
curve of K1(r). The dependence of the relative coordinate of this minimum Rm/a on the value 
in (dm/do) is shown in Fig; 1 (curve 2). For r > R m, the coefficient of permeability is ob- 
served to increase with distance, which is related with the sharp increase in the size of 
pulverized rock pieces. At the same time, due to the decrease of the effective strength with 
increasing dm/do , dispersion in the radial fracture zone decreases, which leads to a decrease 
in the permeability coefficient in this.zone. At the same time, the permeability in the 
fracture zone can be comparable to the permeability in the pulverization zone (curve 2 in 
Fig. 3) and even becomes lower (curve 3 in Fig. 3). 

We note that the nonmonotonic nature of the distance dependence of the permeability coef- 
ficlent follows from the theory proposed. However~ in some cases the indicated nonmonotonic 
behavior can turn out to be quite weakly expressed (e.g., curve 2 in Fig. 3). 

Unfortunately, due to insufficient experimental data, it is difficult to compare the 
theoretical results with experimental results at the present time. In the present work, for 
comparison, we used the results of the"Hardhat" experiment, presented in [2]. In this case, 
we chose the following values of the parameters: do = 0.5 cm, dm/do = 20, Ko = 1.75"10 s. 

A graph of the theoretical dependence of the permeability coefficient on distance to- 
gether with the indicated experimental data is presented in Fig. 4. From the comparison 
presented, it is evident that it is possible to describe fairly well both the relative de- 
pendence of the permeability coefficient on distance and its absolute value. The lack 
of a sufficient quantity of experimental data does not permit a more definitive answer to the 
question as to whether or not the nonmonotonic behavior of the permeability coefficient, pre- 
dicted by the theory, exists, as well as which of the two theoretical functions (15) or (16) 
better describes the behavior of K(r) in the radial fracture zone. 

126 



~'/K I : 

ip...~ 

~g7 
I 
I 
I 
I 
1 

o 

A 
; I  

- . y \  . 

\ . ~ ,  

5 \ 

. 

~,D 
1o 

1 

IO t 

i6 2 

t J  

f (~4 

o 

I 
I 
I 
I 
I 

2 4 

A 

i 
2 4 6 8 f 8 

Fig. 3 Fig. 4 

The authors thankV. M. Tsvetkov for discussing the work and for useful remarks. 

LITERATURE CITED 

i. C. R. McKee and M. E. Hanson, "Explosively created permeability from single charges," 
Soc. Petroleum Eng., J., 15, No. 6 (1975). 

2. C.R. Boardman, "Engineering effects of underground nuclear explosions," in: 
Symposium on Engineering with Nuclear Explosives, Vol. i, Las Vegas, Nevada (1970), 

3. V. I. Rodionov et al., Mechanical Effect of an Underground Explosion [in Russian], 
Nedra, Moscow (1971). 

4. V. N. Nikolaevskii,"Relation of volume and shearing plastic stresses and shock waves in 
soft soils," Doki. Akad. Nauk SSSR, 177 , No. 3 (1967). 

5. L. S. Leibenzon, Underground Hydraulics of Water, Oil, and Gas [in Russian], Collection 
of Works, Vol. ii, Izd. Akad. Nauk SSSR, Moscow (1953). 

6. R. Collins, Fluid Flow through Porous Materials [Russian translation], Mir, Moscow 
(1964). 

7. S.A. Dunin and V. K. Sirotkin, "Expansion of a gas cavity in brittle rock taking into 
account the dilatancy properties of soil," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1977). 

8. Failure. Handbook [in Russian], Vol. l, Moscow (1973). 
9. E. S. Ro=m, Filtration Properties of Fractured Rock [in Russian], Nedra, Moscow (1966). 

i0. G. Rodin, Seismology of a Nuclear Explosion [Russian translation], Mir, Moscow (1974). 

127 


